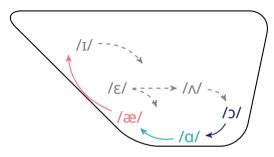
Visually-oriented enhancement of vowel contrast in the Northern Cities Shift

Jonathan Havenhill

July 7, 2020 LabPhon 17



香港大學 THE UNIVERSITY OF HONG KONG

Introduction

- Vowel systems are organized around principles of acoustic and auditory dispersion (Liljencrants & Lindblom, 1972; de Boer, 2001; Flemming, 2004)
- Are vowel systems also visually or articulatorily dispersed?
 - Diehl & Kluender (1989): articulatory dispersion can't predict prevalence of [i u a] over [y u a]. Both systems are equally dispersed in articulatory terms; enhancement is primarily auditory
 - Listeners are also sensitive to non-auditory perceptual cues, including vision (McGurk & MacDonald, 1976; McGuire & Babel, 2012)
 - Can visual perceptibility predict which articulatory configuration is preferred in cases where multiple configurations are possible?

The Northern Cities Shift

- Chain shift characterized by raised TRAP (/æ/), fronted LOT (/ɑ/), and fronted/lowered THOUGHT (/ɔ/) (Labov et al., 2006)
- ► Fronted THOUGHT fills the vowel space gap left behind by fronted LOT
- Acoustics can't predict how fronted THOUGHT will be articulated: F2 increase can be achieved by tongue fronting and/or lip unrounding

This Study

- Havenhill & Do (2018): Metro Detroit speakers show a range of articulatory strategies for maintaining LOT-THOUGHT contrast, but unround variants of THOUGHT are weaker than round variants in audiovisual perception
- This study: Investigation of articulatory patterns for Northern Cities-shifted LOT and THOUGHT among Chicagoans
- ► Research questions:
 - Are round variants of fronted THOUGHT more common than unround variants, given that they avoid the loss of visual contrast?
 - ► Do speakers actively enhance the LOT-THOUGHT contrast for visual perceptibility in corrective speech?

Methods

- Fifteen (3 men, 12 women, ages 20 to 77) Chicago natives recruited at Northwestern University
- Normal speech task: Three repetitions of 123 words containing /æ α ɔ i u o/, in carrier phrase "say _____ again."
- Corrective focus task: Subset of words containing LOT and THOUGHT, in carrier phrase 'I said target_x and target_y, not contrast_a and contrast_b."
 - "I said *nod* and *sod*, not *gnawed* and *sawed*" (words in color were measured)
 - Prompt: "Speak clearly and with as much emphasis as possible, as though you are correcting someone who misheard you."
- Simultaneous high-speed ultrasound (84 fps), lip video (60 fps), and audio recorded in AAA (Articulate Instruments Ltd., 2012)

Acoustic Results

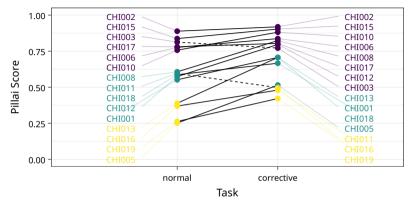


Figure 1: Pillai score (Hay et al., 2006) by task, all participants.

- ► Speakers vary in the extent to which LOT-THOUGHT contrast is preserved
- ▶ 13 of 15 speakers increase acoustic distance in corrective speech

Articulatory Results: Normal Speech

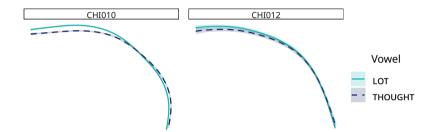


Figure 2: Polar SSANOVA (Mielke, 2015) for LOT and THOUGHT with 95% CI. Tongue front is to the left.

 Seven speakers exhibit significant difference in tongue position (like Speaker 10), while eight do not (Speaker 12)

Articulatory Results: Normal Speech

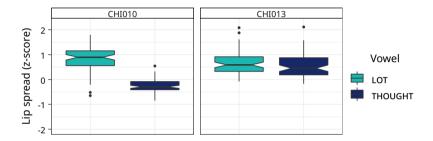


Figure 3: Lip spread measurements for LOT and THOUGHT.

- 14 of 15 speakers (incl. Speaker 10) show significant difference between LOT and THOUGHT in terms of lip spread
- ▶ Speaker 13 is the sole exception

Articulatory Results: Corrective Speech



Figure 4: Lip spread measurements for LOT and THOUGHT in normal and corrective speech.

- In corrective speech, 11 of 15 speakers significantly increase lip spread distinction between LOT and THOUGHT
- ► Speaker 13 produces distinction not observed in normal speech

Articulatory Results: Corrective Speech

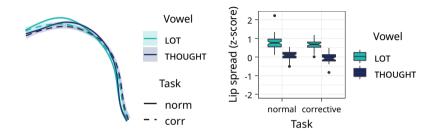


Figure 5: Lip spread measurements for LOT and THOUGHT in normal and corrective speech.

- Three speakers increase lip spread distinction with little or no increase in acoustic distance
- Speaker 18 increases rounding for THOUGHT, while tongue distinction is lost

Conclusions

- Visual perceptibility drives preference for maintaining lip rounding distinction in normal speech (cf. Havenhill, 2018; Havenhill & Do, 2018)
- In corrective speech, speakers show a range of articulatory strategies, but some showed an increase in lip rounding with no accompanying increase in acoustic distance
 - Lip rounding enhancement is not necessarily a byproduct of auditory enhancement
- Articulatory strategies that preserve or enhance both auditory and visual contrast are likely to be favored over strategies that improve contrast in the auditory domain alone

Thank you!

Many thanks to:

Youngah Do, Lisa Zsiga, and Jen Nycz for comments and suggestions; Jennifer Cole, Annette D'Onofrio, and Chun Chan for assistance with lab space and participant recruitment; and research assistant May Chan Pik Yu.

References I

Articulate Instruments Ltd. 2012. Articulate Assistant Advanced user guide: Version 2.14. Edinburgh, UK: Articulate Instruments Ltd.

- de Boer, Bart. 2001. The origins of vowel systems. Oxford: Oxford University Press.
- Diehl, Randy L. & Keith R. Kluender. 1989. On the objects of speech perception. **Ecological Psychology** 1(2). 121–144.
- Flemming, Edward. 2004. Contrast and perceptual distinctiveness. In Bruce Hayes, Robert Kirchner & Donca Steriade (eds.), **Phonetically-based phonology**, Cambridge: Cambridge University Press.
- Havenhill, Jonathan. 2018. Constraints on articulatory variablity: Audiovisual perception of lip rounding: Georgetown University Doctoral dissertation.
- Havenhill, Jonathan & Youngah Do. 2018. Visual speech perception cues constrain patterns of articulatory variation and sound change. **Frontiers in Psychology** 9. 728. doi: 10.3389/fpsyg.2018.00728.
- Hay, Jennifer, Paul Warren & Katie Drager. 2006. Factors influencing speech perception in the context of a merger-in-progress. Journal of Phonetics 34(4). 458–484. doi: 10.1016/j.wocn.2005.10.001.
- Labov, William, Sharon Ash & Charles Boberg. 2006. The atlas of North American English. Berlin: Walter de Gruyter. doi: 10.1515/9783110206838.
- Liljencrants, Johan & Björn Lindblom. 1972. Numerical simulation of vowel quality systems: The role of perceptual contrast. Language 48(4). 839–862.

References II

- McGuire, Grant & Molly Babel. 2012. A cross-modal account for synchronic and diachronic patterns of /f/ and /θ/ in English. Laboratory Phonology 3(2). 1–41. doi: 10.1515/lp-2012-0014.
- McGurk, Harry & John MacDonald. 1976. Hearing lips and seeing voices. **Nature** 264. 746–748. doi: 10.1038/264746a0.
- Mielke, Jeff. 2015. An ultrasound study of Canadian French rhotic vowels with polar smoothing spline comparisons. **The Journal of the Acoustical Society of America** 137(5). 2858–2869. doi: 10.1121/1.4919346.