Naturalness and frequency in implicit phonological learning

Youngah Do Elizabeth Zsiga Jonathan Havenhill

Georgetown University

LSA 90 January 7, 2016

Effect of naturalness in learning phonology

- Mixed findings in the literature wrt the role of naturalness in phonological learning
- More natural or unmarked patterns are learned more readily (Wilson, 2006; Carpenter 2010; van de Vijver, 2011)
 - palatalization before [i] > [a]
 - stressed low-vowels > stressed high-vowels
- No naturalness bias (Moreton & Pater, 2012; Moreton & Pertsova 2014)

Frequency effects in learning phonology

- Frequency also matters.
- Exposure to more data results in better learning.
 - When enough data is provided, unnatural alternations can be learned, overcoming any naturalness bias (Peperkamp et al., 2006; Zsiga & Boyer, in press)
- Learners rely on natural classes to generalize alternations, but also track segmental frequency (Kaplan, 2010; Albright & Do, 2013)

This study

- The role of a naturalness bias in learning phonological alternations
- The role of frequency in phonological learning
 - Learning increases with increased exposure to an alternation.
 - How do natural classes and segmental frequency contribute to generalization of alternations?
- Are there differences between implicit vs. explicit learning?
- Test case: post-nasal voicing and devoicing

Natural post-nasal voicing

- Phonetic tendency for voicing to continue into a post-nasal stop (Hayes & Stivers, 1996)
- Phonologized as *NT (Pater 1996; Hayes 1999; Hyman 2001)
- Evidenced in numerous languages
 - Indonesian (Halle and Clements 1983)
 - Chamorro (Topping 1969)
 - Malagasy (Dziwirek 1989)

*NT effects

- Typologically, many languages allow only ND: Sequence of nasal plus voiceless stop (NT) is avoided.
 - Kikuyu Postnasal Voicing (Clements 1985):
 - OshiKwanyama Voicing and Fusion (Steinbergs 1985):
- Some languages (English) allow both NT and ND, but no language will prefer NT to ND

Unnatural post-nasal devoicing?

- A counterexample: Setswana
 - Hyman 2001, Coetzee et al. 2007, 2010, Sole et al. 2010, Gouskova et al. 2011
- Voiced stops devoice in post-nasal position: bala 'count' mpala 'count me'
 - bata 'look for' mpata 'look for me' disa 'guard' ntisa 'guard me'
- While voiceless stops remain unchanged: pala 'refuse' mpala 'refuse me'

Unnatural post-nasal devoicing?

Caveats:

- Note that Setswana has a skewed voicing distribution:
 - /b/ and /p/ contrast before all vowels
 - d occurs only as an allophone of /I/ before high vowels xo-bol-a 'to rot' bod-ile 'rotted'
 - g does not occur
 - The alternation is therefore most frequently evidenced as b~p

Post-nasal devoicing in Sebirwa

- Sebirwa borrowed devoicing from Setswana (Chebanne 2000).
- Doubly unnatural: devoicing of labials only (Zsiga & Boyer in press)
- Frequency may explain why only labial devoicing was borrowed

Artificial language learning experiment

- We tested whether:
 - Post-nasal voicing is learned better than devoicing. (Evidence of naturalness bias.)
 - With sufficient evidence of unnatural patterns, post-nasal devoicing can be learned as well. (Frequency can overcome naturalness bias.)
 - Voicing alternations are generalized on the basis of segmental frequency and/or natural classes

Artificial language learning experiment

- ► Task: learn how to create plural forms in a Martian language
- Singular ~ plural pairs presented auditorily with pictures from van de Vijver et al. (2011)
- Training: 56 items presented once per participant, in random order
- Prefixal plural marker in which vowel height harmonizes with first stem vowel
 - $[ubi] \sim [inubi]$, $[rasu] \sim [arrasu]$
- Obstruent-initial roots exhibit voicing alternations
 - $[\mathbf{p}abli] \sim [am\mathbf{b}abli], [\mathbf{b}abli] \sim [am\mathbf{p}abli]$

Languages varying naturalness and frequency of alternators

 10 languages: 5 with postnasal voicing, 5 with postnasal devoicing

	Alternators			Nonalternators			
lg	labial	coronal	filler	labial	coronal	filler	total
1	8	0	20	8	0	20	56
2	8	4	16	8	4	16	56
3	8	8	12	8	8	12	56
4	8	12	8	8	12	8	56
5	8	16	4	8	16	4	56

▶ Alternating fillers: $/VN+labi/ \rightarrow [allabi]$ (liquid-initial)

▶ Non-alternating fillers: $/VN+ipu/ \rightarrow [inipu]$ (vowel-initial)

Implicit vs. Explicit learning

- Experiment 1: Participants instructed to figure out how plurals are formed in Martian
 - Focus is on both vowel harmony and consonant alternations
- Experiment 2: Participants instructed to figure out which prefix vowel is used with which stem
 - Vowel harmony task is made explicit, in order to reduce attention paid to consonant alternations
 - Implicit learning of consonant alternations

- Participants were asked to choose the correct plural form for 28 unseen words
- ► Test items included labial-, coronal-, and velar-initial stems
 - Velar-initial stems were not seen during training
- ► Four choices given for [kugri] in Natural languages:
 - Correct harmony, correct voicing: [ingugri]
 - Correct harmony, incorrect voicing: [inkugri]
 - Correct harmony, incorrect segment: [illugri]
 - Incorrect harmony, incorrect segment: [allugri]

Participants

- Experiment 1: 109 adult native speakers of English
- Experiment 2: 208 adult native speakers of English
- Criteria for exclusion:
 - Participants who did not complete entire task (training + test)
 - Participants who completed the task in under 7 minutes
- Remaining participants:
 - 105 in Experiment 1
 - 179 in Experiment 2

Results: Vowel Harmony

Vowel harmony is learned equally well across natural and unnatural conditions and across frequencies:

Learning of vowel harmony (Experiment 1)

Results: Vowel Harmony

Vowel harmony is learned equally well across natural and unnatural conditions and across frequencies:

Learning of vowel harmony (Experiment 2)

Results: Naturalness

No significant main effect of naturalness in Experiment 1 (p = 0.221) or Experiment 2 (p = 0.264).

Learning of Unnatural vs. Natural Lgs

Results: Frequency

In both experiments, learning improves with increased evidence for voicing and devoicing alternations (Experiment 1: β = 0.008, t = 5, p < 0.001, Experiment 2: β = 0.003, t = 2.361, p = 0.018)

Frequency effect on learning (Experiment 1)

Results: Frequency

The frequency effect is weaker in Experiment 2 (implicit learning):

Why does frequency not play a larger role in implicit learning?

Results: Experiment 2, Natural languages

- For labials, moderate frequency effect
- ► For coronals, no frequency effect in languages 2-5
- For velars, accuracy is below chance in all conditions

Results: Experiment 2, Natural languages

- Initial state:
 - OO-Ident[±voi] >> *NT >> *nt, *np, *nk
- Language 1 (voicing alternation only among labials):
 - With evidence for single-segment alternation, *np is promoted
 - *NT is promoted, but only minimally
 - *np >> OO-Ident[\pm voi] >> *NT >> *nt, *nk
- Languages 2-5 (alternation among coronals and labials):
 - With increasing evidence for coronal alternation, *nt is promoted
 - With evidence for alternation among multiple segments, general Markedness constraint promoted
 - *np, *nt >> *NT, OO-Ident[±voi] >> *nk

Results: Experiment 1, Natural languages

- For labials, high performance when participants are trained only on labial alternations.
- A drop in performance is observed as coronal alternations are introduced
- Performance increases for all segments when sufficient evidence is provided: generalization based on the natural class of voiceless stops.
- Generalization to velars is nearly significant (p = 0.06)

Results: Experiment 1, Natural languages

Initial state:

- OO-Ident[±voi] >> *NT >> *nt, *np, *nk
- Language 1 (voicing alternation only among labials):
 - More learning of labial alternation than in Exp. 2
 - When explicit focus is given to consonant alternation,
 *np is promoted more than in implicit learning.
 - *np >> OO-Ident[\pm voi] >> *NT >> *nt, *nk

Results: Experiment 1, Natural languages

Languages 2-3 (alternation among coronals and labials):

- In explicit learning, *nt is promoted proportionally to frequency of coronal alternation: segment-based learning
- No observed effect of general markedness constraint
- Without generalization, task becomes more complex, performance on labials decreases.
- $\label{eq:started} \bullet \ \mbox{*np} >> \ \mbox{*nt} >> \ \mbox{OO-Ident}[\pm \mbox{voi}] >> \ \mbox{*NT} >> \ \mbox{*nk}$
- Languages 4-5 (increased evidence for alternation)
 - General markedness constraint promoted with plentiful evidence from multiple segments
 - *NT, *np, *nt >> OO-Ident[±voi] >> *nk

Discussion

- Naturalness effect
 - Naturalness bias does not play a role in learning voicing alternation; structural simplicity may be more important (Moreton & Pater, 2012; Moreton & Pertsova 2014)
 - Postnasal voicing might not be clearly more natural than postnasal voicing
 - L1 effect: Both ND and NT are phonotactically legal in English

Discussion

Frequency effect

- General markedness constraint is reranked only with evidence for alternation among multiple segments
- Implicit vs. Explicit learning
 - No active role of general markedness constraint in explicit learning—learners rely on segment-specific constraints
 - Mystery: generalization to unseen segment only in explicit learning

Thank you!

Contact:

Youngah: yd79@georgetown.edu Lisa: zsigae@georgetown.edu Jon: jeh241@georgetown.edu